Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections.
نویسندگان
چکیده
In the neocortex, the effectiveness of potential transplantation therapy for diseases involving neuronal loss may depend upon whether donor neurons can reestablish the precise long-distance projections that form the basis of sensory, motor, and cognitive function. During corticogenesis, the formation of these connections is affected by tropic factors, extracellular matrix, structural pathways, and developmental cell death. Previous studies demonstrated that embryonic neurons and multipotent neural precursors transplanted into neocortex or mice undergoing photolytically induced, synchronous, apoptotic neuronal degeneration selectively migrate into these regions, where they differentiate into pyramidal neurons and accept afferent synaptic input. The experiments presented here assess whether embryonic neurons transplanted into regions of somatosensory cortex undergoing targeted cell death differentiate further and develop long-distance axons and whether this outgrowth is target specific. Neocortical neurons from Gestational Day 17 mouse embryos were dissociated, prelabeled with fluorescent nanospheres and a lipophilic dye (DiI or PKH), and transplanted into adult mouse primary somatosensory cortex (S1) undergoing apoptotic degeneration of callosal projection neurons. Donor neurons selectively migrated into and differentiated within regions of targeted neuronal death in lamina II/III over a 2-week period, in agreement with our prior studies. To detect possible projections made by donor neurons 2, 4, 6, 8, or 10 weeks following transplantation, the retrogradely transported dye fluorogold (FG) was stereotaxically injected into contralateral S1, ipsilateral secondary somatosensory cortex (S2), or ipsilateral thalamus. Ten weeks following transplantation, 21 +/- 5% of the labeled donor neurons were labeled by FG injections into contralateral S1, demonstrating that donor neurons sent projections to the distant area, the original target of host neurons undergoing photolytically induced cell death. No donor neurons were labeled with FG injections into ipsilateral S2 or thalamus, nearby targets of other subpopulations of neurons in S1. These data indicate that in the adult neocortex: (1) transplanted immature neurons are capable of extending long-distance projections between hemispheres through the mature white matter of the corpus callosum and (2) these projections are formed with specificity to replace projections by neurons undergoing synchronous degeneration. These experiments provide an experimental system with which to test factors affecting such outgrowth and connectivity. Taken together, these results suggest that the reconstruction and repair of cortical circuitry responsible for sensory, motor, or cognitive function may be possible in the mature neocortex, if donor neurons or precursor cells are provided with the correct combination of local and distant signals within an appropriately permissive host environment.
منابع مشابه
Targeted neocortical cell death in adult mice guides migration and differentiation of transplanted embryonic neurons.
Local expression of cellular and molecular signals is required for normal neuronal migration and differentiation during neocortical development and during periods of plasticity in the adult brain. We have previously shown that neonatal and juvenile mice that induction of apoptotic degeneration in neocortical pyramidal neurons by targeted photolysis provides an altered environment that directs m...
متن کاملMature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
Neuronal migration is an essential step in normal mammalian neocortical development, and the expression of defined cellular and molecular signals within the developing cortical microenvironment is likely crucial to this process. Therapy via transplanted or manipulated endogenous precursors for diseases which involve neuronal loss may depend critically on whether newly incorporated cells can act...
متن کاملLate-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration.
In the neocortex, the effectiveness of potential cellular repopulation therapies for diseases involving neuronal loss may depend critically on whether newly incorporated cells can differentiate appropriately into precisely the right kind of neuron, re-establish precise long-distance connections, and reconstruct complex functional circuitry. Here, we test the hypothesis that increased efficiency...
متن کاملMultipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex.
Neurons undergoing targeted photolytic cell death degenerate by apoptosis. Clonal, multipotent neural precursor cells were transplanted into regions of adult mouse neocortex undergoing selective degeneration of layer II/III pyramidal neurons via targeted photolysis. These precursors integrated into the regions of selective neuronal death; 15 +/- 7% differentiated into neurons with many characte...
متن کاملDevelopmental Controls are Re-Expressed during Induction of Neurogenesis in the Neocortex of Young Adult Mice
Whether induction of low-level neurogenesis in normally non-neurogenic regions of the adult brain mimics aspects of developmental neurogenesis is currently unknown. Previously, we and others identified that biophysically induced, neuron subtype-specific apoptosis in mouse neocortex results in induction of neurogenesis of limited numbers of subtype-appropriate projection neurons with axonal proj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 139 1 شماره
صفحات -
تاریخ انتشار 1996